The proteasome cap RPT5/Rpt5p subunit prevents aggregation of unfolded ricin A chain

نویسندگان

  • Paola Pietroni
  • Nishi Vasisht
  • Jonathan P. Cook
  • David M. Roberts
  • J. Michael Lord
  • Rasmus Hartmann-Petersen
  • Lynne M. Roberts
  • Robert A. Spooner
چکیده

The plant cytotoxin ricin enters mammalian cells by receptor-mediated endocytosis, undergoing retrograde transport to the ER (endoplasmic reticulum) where its catalytic A chain (RTA) is reductively separated from the holotoxin to enter the cytosol and inactivate ribosomes. The currently accepted model is that the bulk of ER-dislocated RTA is degraded by proteasomes. We show in the present study that the proteasome has a more complex role in ricin intoxication than previously recognized, that the previously reported increase in sensitivity of mammalian cells to ricin in the presence of proteasome inhibitors simply reflects toxicity of the inhibitors themselves, and that RTA is a very poor substrate for proteasomal degradation. Denatured RTA and casein compete for a binding site on the regulatory particle of the 26S proteasome, but their fates differ. Casein is degraded, but the mammalian 26S proteasome AAA (ATPase associated with various cellular activities)-ATPase subunit RPT5 acts as a chaperone that prevents aggregation of denatured RTA and stimulates recovery of catalytic RTA activity in vitro. Furthermore, in vivo, the ATPase activity of Rpt5p is required for maximal toxicity of RTA dislocated from the Saccharomyces cerevisiae ER. The results of the present study implicate RPT5/Rpt5p in the triage of substrates in which either activation (folding) or inactivation (degradation) pathways may be initiated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

1.15 Å resolution structure of the proteasome-assembly chaperone Nas2 PDZ domain

The 26S proteasome is a 2.5 MDa protease dedicated to the degradation of ubiquitinated proteins in eukaryotes. The assembly of this complex containing 66 polypeptides is assisted by at least nine proteasome-specific chaperones. One of these, Nas2, binds to the proteasomal AAA-ATPase subunit Rpt5. The PDZ domain of Nas2 binds to the C-terminal tail of Rpt5; however, it does not require the C-ter...

متن کامل

X 1 . 15 Å resolution structure of the proteasome - assembly chaperone Nas 2 PDZ domain

PDB reference: proteasome-assembly chaperone Nas2 PDZ domain, 4o06 The 26S proteasome is a 2.5 MDa protease dedicated to the degradation of ubiquitinated proteins in eukaryotes. The assembly of this complex containing 66 polypeptides is assisted by at least nine proteasome-specific chaperones. One of these, Nas2, binds to the proteasomal AAA-ATPase subunit Rpt5. The PDZ domain of Nas2 binds to ...

متن کامل

Ribosome-mediated folding of partially unfolded ricin A-chain.

After endocytic uptake by mammalian cells, the cytotoxic protein ricin is transported to the endoplasmic reticulum, whereupon the A-chain must cross the lumenal membrane to reach its ribosomal substrates. It is assumed that membrane traversal is preceded by unfolding of ricin A-chain, followed by refolding in the cytosol to generate the native, biologically active toxin. Here we describe bioche...

متن کامل

Phosphorylation of the C-terminal tail of proteasome subunit α7 is required for binding of the proteasome quality control factor Ecm29

The proteasome degrades many short-lived proteins that are labeled with an ubiquitin chain. The identification of phosphorylation sites on the proteasome subunits suggests that degradation of these substrates can also be regulated at the proteasome. In yeast and humans, the unstructured C-terminal region of α7 contains an acidic patch with serine residues that are phosphorylated. Although these...

متن کامل

Inhibition of the Unfolded Protein Response by Ricin A-Chain Enhances Its Cytotoxicity in Mammalian Cells

Ricin is a highly toxic type II ribosome-inactivating protein that has potential as a biochemical weapon and as the toxic component of immunotoxins. The unfolded protein response (UPR) is a survival response that helps cells to recover from endoplasmic reticulum (ER) stress. Failure to recover from ER stress leads to apoptosis. In yeast, ricin-A-chain (RTA), the enzymatic component of ricin, in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 453  شماره 

صفحات  -

تاریخ انتشار 2013